Friday, 9 January 2015

Samsung introduces Penvatars, brings ability to customize the S Pen’s pointer

If you’re an owner of a Samsung Galaxy Note 4, or its Edge variant, you may have noticed that when you hover your S Pen stylus slightly above the screen, a pointer appears (similar to a PC’s mouse cursor). Cursors aren’t generally known to illicit much excitement from people, but Samsung is hoping to bring a smile to your face by announcing Penvatars.
Penvatars is the name Samsung is giving to its upcoming app for S Pen wielders and it will allow you to customize those pointers. Most likely the only devices that will support this app will be users of the Note 4 (or the Note Edge), with added support for older devices possibly later on.
Featured heavily in Samsung’s demo of Penvatars are Marvel Comics characters, like Nick Fury and Thor. This team-up is mostly likely related to the partnership between Samsung and Marvel with regard to the upcoming Avengers: Age of Ultron movie showing in theatres this coming May.

Google may bring auto insurance shopping service to US

Google may finally be ready to launch its auto insurance comparison shopping service in the US, according to an industry analyst.
A review of state insurance commission filings by Forrester Research analyst Ellen Carney discovered that an entity doing business under the name Google Compare Auto Insurance Services is licensed to do business in more than half the US, according to a Carney blog post. The company is also authorized to transact business with half a dozen insurance providers, including MetLife, Mercury and Workmen's Auto Insurance.
Carney also notes that a corporate treasurer at Google named Meredith Stechbart, who doesn't appear to have any insurance industry experience, is licensed to sell insurance through Google Compare as well as auto insurance comparison site CoverHound.
Taken together, the moves suggest that Google is getting ready to offer tools in the US for auto insurance comparison shopping, in much the same way it already does with hotel and flight reservations. Fees paid for referrals through the service could deliver Google a new revenue source in the face of the company's eroding search dominance, which slipped to 75.2 percent in December from 79.3 percent a year ago, according to analytics firm Statcounter.
Google has been offering auto insurance quotes in the UK since 2012, a year after it purchased, a British price comparison service that offered instant quotes on personal financial products. Google has been courting insurers to participate in a US site for almost as long, but the service's launch keeps being delayed, perhaps to complete an acquisition of CoverHound, Carney wrote. She now expects a pilot program to launch in California in the first quarter of 2015, followed by launches in Illinois, Pennsylvania and Texas.
Carney suggests that a Google acquisition of San Francisco-based CoverHound could give the web giant a headstart in a very competitive market.
"As much as I'd like to imagine someone could become so enthralled with the insurance industry that they'd leave a job at Google to become an insurance agent, there's a more logical explanation for the addition of CoverHound on Ms. Stechbart's license," Carney wrote.
"An acquisition of CoverHound gets the Google insurance entity to market faster in the U.S. than they've been able to get on their own," she writes. "It gets them a national full-service independent agency with more insurers that have already signed on."
Carney also notes that CoverHound's experience in the industry would give it clout and that an acquisition could explain the delay in launching the service.

Monday, 5 January 2015

Li-Fi Gets Ready to Compete With Wi-Fi

As LEDs become a more common source for room lighting, they’re opening a new pathway for linking mobile devices to the Internet, with the potential for wider bandwidth and quicker response time than Wi-Fi. At least that’s what researchers such as Harald Haas, chair of mobile communications at the University of Edinburgh, are hoping.
“All the components, all the mechanisms exist already,” Haas says. “You just have to put them together and make them work.”
Haas’s group, along with researchers from the Universities of ­Cambridge, Oxford, St. Andrews, and Strathclyde, are halfway through a four-year, £5.8 million project funded by the Engineering and Physical Sciences Research Council, in the United Kingdom. They are pursuing ultra­parallel visible light communication, which would use multiple colors of light to provide high-bandwidth linkages over distances of a few meters. Such a Li-Fi system, as it’s been dubbed, could supplement or in some instances replace traditional radio-based Wi-Fi, they say. But taking on such a broadly used radio technology is an uphill battle.
At the IEEE Photonics Conference in October, members of the consortium showed off the progress they’re making. For instance, the team has used commercially available red, green, and blue LEDs as both emitters and as photodiodes to detect light. By doing that, they created a system that could both send and receive data at aggregate rates of 110 megabits per second. When transmitting in one direction only, they reached a rate of 155 Mb/s.
But Haas says that this version is limited by existing LEDs, and by the use of LEDs as transmitters and detectors at the same time. Members of the consortium, however, have created a better LED, which provides a data rate close to 4 gigabits per second operating on just 5 milliwatts of optical output power and using high-­bandwidth photodiodes at the receiver. With a simple lens to enhance the distance, they can send data 10 meters at up to 1.1 Gb/s, and soon they will increase that to 15 Gb/s, Haas says. The 802.11ad Wi-Fi standard for the 60-gigahertz radio band reaches just under 7 Gb/s, so Li-Fi would more than double that rate.
They’re also using avalanche photodiodes to make better receivers. In an avalanche photodiode, a single photon striking the receiver produces a cascade of electrons, amplifying the signal. Haas’s team at the Li-Fi R&D Centre has created the first receiver chip for Li-Fi with integrated avalanche photodiodes on CMOS. The 7.8-square-­milli­meter IC houses 49 photodiodes.
Separately, the Fraunhofer Institute for Photonic Microsystems, in Dresden, Germany, had announced plans to demonstrate a Li-Fi hot spot in November (after press time) at the Electronica 2014 trade show in Munich. Frank Deicke, who leads the team developing Li-Fi at Fraunhofer, says that the system would most likely use infrared light and is aimed at industrial users rather than consumers. The hot spot was set to be a point-to-point link with a data rate of up to 1 Gb/s.
“You can have more or less the same data rate as over a USB cable,” Deicke says. “That’s very challenging for most wireless technologies, like Wi-Fi and Bluetooth.” Another advantage, says Deicke, is that the latency of Wi-Fi—the time between when a signal is sent and when it’s received—is measured in milli­seconds, whereas Li-Fi’s latency is on the order of microseconds. In industrial applications, where data has to flow between sensors, actuators, and a control unit, low latency and high data rates would make Li-Fi useful in places where Wi-Fi is not. “We don’t want to replace Wi-Fi,” he says. “That’s not our goal.”
But Deicke says Li-Fi could complement existing communications technologies, including Wi-Fi and gigabit Ethernet. For now, his group is not focusing on combining it with general lighting, as Haas proposes.
A group of European academic researchers and networking companies is aiming for the consumer market, though. The group is working on a project called Advanced Convergent and Easily Manageable Innovative Network Design (ACEMIND) to develop ways to manage local networks in homes and small businesses. ­ACEMIND includes a number of demonstrator projects to test different technologies, including Li-Fi. Dmitris Katsianis at the University of Athens, who is a participant in ACEMIND, thinks Li-Fi might be in practical use within the next five years. “Li-Fi has the advantage of being useful in electromagnetically sensitive areas such as in hospitals, aircraft cabins, and power plants,” he says.

Haas is counting on a much bigger market. He expects LEDs to evolve past just being light sources, much the same way the cellphone evolved from a communications device to a mobile computer. “In 25 years, every lightbulb in your house will have the processing power of your cellphone today,” he says. “It will in the future serve illumination as just one of many purposes.”

Article source: